ERRATUM

In "A New Reduced Vapor Pressure Equation" by Richard E. Thek and Leonard I. Stiel [Vol. 12, No. 3, pp. 599-602 (1966)], Equation (13) should read as

$$\ln P_R = A \left(1.14893 - \frac{1}{T_R} - 0.11719 \, T_R - 0.03174 \, T_R^2 - 0.375 \ln T_R \right) + c \left[\frac{T_R^{n-1} - 1}{n-1} + k \left(\frac{1}{T_R} - 1 \right) \right]$$
(13)

Equation (17), which is based on Equation (13), should read as

$$\ln P_{R} = A \left(1.14893 - \frac{1}{T_{R}} - 0.11719 T_{R} - 0.03174 T_{R}^{2} - 0.375 \ln T_{R} \right) + (1.042\alpha_{c} - 0.46284A) \left[\frac{T_{R}^{5.2691 + 2.0753A - 3.1738a} - 1}{5.2691 + 2.0753A - 3.1738a} + 0.040 \left(\frac{1}{T_{R}} - 1 \right) \right]$$
(17)

Letter to the Editor

The Energy Balance for Ideal Gas Flow

In a recent communication by de Nevers [Vol. 13, No. 2, pp. 387-388 (1967)], the energy balance for an ideal gas bubbling through a liquid is obtained as

$$\frac{dQ}{dt} = \frac{1}{J g_c} \left(\frac{\Delta V^2}{2} + g \Delta Z \right) M_G$$

de Nevers, who states that the form of this equation is peculiar (because heat is added to the gas in order to keep it isothermal, although the process considered is dissipative), discusses in some detail the mechanism of dissipation through the liquid phase. It is our opinion that the reader is left with the impression that the energy balance takes this particular form due to the presence of the liquid phase.

In reality, the above equation is valid for an ideal gas flowing through any system whatsoever, provided that (1) the inlet and exit temperatures are equal, and (2) there is no shaft work done on the system. Consider an ideal gas flowing upward through a tube: the enthalpy being independent

(Continued on page 831)

(Continued from page 625)	
Sorption and Diffusion of Gaseous Hydrocarbons in Synthetic Mordenite Charles N. Satterfield and Alton J. Frabetti, Jr.	731
Normal Freezing of Eutectic Forming Organic Mixtures C. S. Cheng, David A. Irvin, and B. G. Kyle	739
A Gravity Corrected Theory for Cylinder Withdrawal David A. White and John A. Tallmadge	745
A Study of Interstitial Liquid Flow in Foam: Part III. Test of Theory Fang-Shung Shih and Robert Lemlich	751
The Growth of Ice Crystals in a Stirred Tank Peter Harriott	755
On a Conjecture of Aris: Proof and Remarks Dan Luss and Neal R. Amundson	759
Incorporation of Ionic Impurities in Crystals Growing from Solution. The Case of Lead Ions in Potassium Chloride Crystals G. D. Botsaris, E. A. Mason, and R. C. Reid	764
Process Control by Digital Compensation H. A. Mosler, L. B. Koppel, and D. R. Coughanowr	768
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures Robert Cole	779
The Injection Method of Determination of Partial Volume at Infinite Dilution B. H. Hensel, W. C. Edmister, and K. C. Chao	784
Flow Characteristics of Horizontally Moving Stable Aqueous Foams Eugene Y. Weissman and Seymour Calvert	788
Thermal Dynamics of a Distributed Parameter Nonadiabatic Humidification Process	793
Mass Transfer in Rectangular Cavities E. L. Jarrett and T. L. Sweeney	797
Laminar Dispersion in Capillaries: Part IV. The Slug Stimulus William N. Gill and V. Ananthakrishnan	801
COMMUNICATIONS TO THE EDITOR	
The Effect of Using a Distillation Column Reactor on the Selectivity of a Complex Reaction J. H. Miller and Thomas E. Corrigan	809
The Use of Green's Functions in the Solution of a Convective Diffusion Equation: Application to a Fuel Cell Battery	810
Vapor-Liquid Equilibria in Mixtures of n-Alcohols and Their Esters P. A. Lewell and D. D. Kristmanson	814
Diffusion Coefficients for Organic Vapors in Polyvinyl Acetate M. E. Morrison	815
Temperature Distribution in a Fin Partially Cooled by Nucleate Boiling Fang-shyong Lai and Yih-yun Hsu	817
Free Oscillations of Fluids in Manometers P. D. Richardson	821
Further Studies on a Melting Problem with Natural Convection Yin-Chao Yen	824
Information Retrieval	826
Academic Openings	831